Vacuolar type H super(+) pumping pyrophosphatases of parasitic protozoa

Trans-membrane proton pumping is responsible for a myriad of physiological processes including the generation of proton motive force that drives bioenergetics. Among the various proton pumping enzymes, vacuolar pyrophosphatases (V-PPases) form a distinct class of proton pumps, which are characterise...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for parasitology Vol. 32; no. 1; pp. 1 - 14
Main Authors McIntosh, M T, Vaidya, AB
Format Journal Article
LanguageEnglish
Published 01.01.2002
Online AccessGet full text

Cover

Loading…
More Information
Summary:Trans-membrane proton pumping is responsible for a myriad of physiological processes including the generation of proton motive force that drives bioenergetics. Among the various proton pumping enzymes, vacuolar pyrophosphatases (V-PPases) form a distinct class of proton pumps, which are characterised by their ability to translocate protons across a membrane by using the potential energy released by hydrolysis of the phosphoanhydride bond of inorganic pyrophosphate. Until recently, V-PPases were known to be the purview of only plant vacuoles and plasma membranes of phototrophic bacteria. Recent discoveries of V-PPases in kinetoplastid and apicomplexan parasites, however, have expanded our view of the evolutionary reach of these enzymes. The lack of V-PPases in the vertebrate hosts of these parasites makes them potentially excellent targets for developing broad-spectrum antiparasitic agents. This review surveys the current understanding of V-PPases in parasitic protozoa with an emphasis on malaria parasites. Topological predictions suggest remarkable similarity of the parasite enzymes to their plant homologues with 15-16 membrane spanning domains and conserved sequences shown to constitute critical catalytic residues. Remarkably, malaria parasites have been shown to possess two V-PPase genes, one is an apparent orthologue of the canonical plant enzyme, whereas the other is a more distantly related paralogue with homology to a recently identified new class of K super(+)-insensitive plant V-PPases. V-PPases appear to localise both to the plasma membrane and cytoplasmic organelles believed to be acidocalcisomes or polyphosphate bodies. Gene transfer experiments suggest that one of the malarial V-PPases is predominantly localised to the surface of intraerythrocytic parasites. We suggest a model in which V-PPase localised to the malaria parasite plasma membrane may serve as an electrogenic pump utilising pyrophosphate as an energy source, thus sparing the more precious ATP. Searching for V-PPase inhibitors could prove fruitful as a novel means of antiparasitic chemotherapy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Review-3
content type line 23
ObjectType-Feature-1
ISSN:0020-7519