[MoO(S2)2L]1- (L = picolinate or pyrimidine-2-carboxylate) Complexes as MoSx-Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution
Crystalline and amorphous molybdenum sulfide (Mo-S) catalysts are leaders as earth-abundant materials for electrocatalytic hydrogen production. The development of a molecular motif inspired by the Mo-S catalytic materials and their active sites is of interest, as molecular species possess a great de...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 41; pp. 13726 - 13731 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
19.10.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | Crystalline and amorphous molybdenum sulfide (Mo-S) catalysts are leaders as earth-abundant materials for electrocatalytic hydrogen production. The development of a molecular motif inspired by the Mo-S catalytic materials and their active sites is of interest, as molecular species possess a great degree of tunable electronic properties. Furthermore, these molecular mimics may be important for providing mechanistic insights toward the hydrogen evolution reaction (HER) with Mo-S electrocatalysts. Herein is presented two water-soluble Mo-S complexes based around the [MoO(S2)2L2]1- motif. We present 1H NMR spectra that reveal (NEt4)[MoO(S2)2picolinate] (Mo-pic) is stable in a d6-DMSO solution after heating at 100 °C, in air, revealing unprecedented thermal and aerobic stability of the homogeneous electrocatalyst. Both Mo-pic and (NEt4)[MoO(S2)2pyrimidine-2-carboxylate] (Mo-pym) are shown to be homogeneous electrocatalysts for the HER. The TOF of 27-34 s-1 and 42-48 s-1 for Mo-pic and Mo-pym and onset potentials of 240 mV and 175 mV for Mo-pic and Mo-pym, respectively, reveal these complexes as promising electrocatalysts for the HER. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-2 |
ISSN: | 1520-5126 |
DOI: | 10.1021/jacs.6b08652 |