Two-dimensional X-ray diffraction characterization of (Zn,Cd,Mg)Se wurtzite layers grown on Bi sub(2)Se sub(3)
ZnSe, Zn sub(0.49)Cd sub(0.51)Se and Zn sub(0.23)Cd sub(0.25)Mg sub(0.52)Se layers grown on Bi sub(2)Se sub(3)/sapphire (0001) by molecular beam epitaxy (MBE) are characterized by two-dimensional X-ray diffraction. Pole figures are calculated for cubic and hexagonal planes of the (Zn,Cd,Mg)Se family...
Saved in:
Published in | Journal of crystal growth Vol. 433; pp. 122 - 127 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ZnSe, Zn sub(0.49)Cd sub(0.51)Se and Zn sub(0.23)Cd sub(0.25)Mg sub(0.52)Se layers grown on Bi sub(2)Se sub(3)/sapphire (0001) by molecular beam epitaxy (MBE) are characterized by two-dimensional X-ray diffraction. Pole figures are calculated for cubic and hexagonal planes of the (Zn,Cd,Mg)Se family and compared to their expected values. The targeted wurtzite plane was (11-22), while the cubic ones were the (220) and (311). The results show that, under our MBE growth conditions, ZnSe, Zn sub(0.49)Cd sub(0.51)Se and Zn sub(0.23)Cd sub(0.25)Mg sub(0.52)Se layers prefer to form the hexagonal (wurtzite) phase rather than the cubic one when grown on Bi sub(2)Se sub(3)/sapphire in (0001) direction. These results have implications for the next generation devices combining semiconductors and topological insulator materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-2 |
ISSN: | 0022-0248 |
DOI: | 10.1016/j.jcrysgro.2015.10.010 |