Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses
Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexi...
Saved in:
Published in | Fusion engineering and design Vol. 89; no. 9-10; pp. 2425 - 2429 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore; some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-2 |
ISSN: | 0920-3796 |
DOI: | 10.1016/j.fusengdes.2014.12.004 |