beta -Aminobutyric Acid (BABA)-lnduced Resistance in Arabidopsis thaliana: Link with Iron Homeostasis

beta -Aminobutyric acid (BABA) is a nonprotein amino acid inducing resistance in many different plant species against a wide range of abiotic and biotic stresses. Nevertheless, how BABA primes plant natural defense reactions remains poorly understood. Based on its structure, we hypothesized and conf...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 27; no. 11; pp. 1226 - 1240
Main Authors Koen, Emmanuel, Trapet, Pauline, Brule, Daphnee, Kulik, Anna, Klinguer, Agnes, Atauri-Miranda, Livia, Meunier-Prest, Rita, Boni, Gilles, Glauser, Gaetan, Mauch-Mani, Brigitte, Wendehenne, David, Besson-Bard, Angelique
Format Journal Article
LanguageEnglish
Published 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:beta -Aminobutyric acid (BABA) is a nonprotein amino acid inducing resistance in many different plant species against a wide range of abiotic and biotic stresses. Nevertheless, how BABA primes plant natural defense reactions remains poorly understood. Based on its structure, we hypothesized and confirmed that BABA is able to chelate iron (Fe) in vitro. In vivo, we showed that it led to a transient Fe deficiency response in Arabidopsis thaliana plants exemplified by a reduction of ferritin accumulation and disturbances in the expression of genes related to Fe homeostasis. This response was not correlated to changes in Fe concentrations, suggesting that BABA affects the availability or the distribution of Fe rather than its assimilation. The phenotype of BABA-treated plants was similar to those of plants cultivated in Fe-deficient conditions. A metabolomic analysis indicated that both BABA and Fe deficiency induced the accumulation of common metabolites, including p-coumaroylagmatine, a metabolite previously shown to be synthesized in several plant species facing pathogen attack. Finally, we showed that the protective effect induced by BABA against Botrytis cinerea was mimicked by Fe deficiency. In conclusion, the Fe deficiency response caused by BABA could bring the plant to a defense-ready state, participating in the plant resistance against the pathogens.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-2
ISSN:0894-0282
DOI:10.1094/MPMI-05-14-0142-R