The antimicrobial peptide aurein 1.2 disrupts model membranes viathe carpet mechanism
The membrane interactions of the antimicrobial peptide aurein 1.2 were studied using a range of biophysical techniques to determine the location and the mechanism of action in DMPC (dimyristoylphosphatidylcholine) and DMPC/DMPG (dimyristoylphosphatidylglycerol) model membranes that mimic characteris...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 14; no. 45; pp. 15739 - 15751 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2012
|
Online Access | Get full text |
Cover
Loading…
Summary: | The membrane interactions of the antimicrobial peptide aurein 1.2 were studied using a range of biophysical techniques to determine the location and the mechanism of action in DMPC (dimyristoylphosphatidylcholine) and DMPC/DMPG (dimyristoylphosphatidylglycerol) model membranes that mimic characteristics of eukaryotic and prokaryotic membranes, respectively. Neutron reflectometry and solid-state NMR revealed subtle changes in membrane structure caused by the peptide. Quartz crystal microbalance with dissipation, vesicle dye leakage and atomic force microscopy measurements were used to investigate the global mode of peptide interaction. Aurein 1.2 displayed an enhanced interaction with the anionic DMPC/DMPG membrane while exhibiting primarily a surface interaction with both types of model membranes, which led to bilayer disruption and membrane lysis. The antimicrobial peptide interaction is consistent with the carpet mechanism for aurein 1.2 with discrete structural changes depending on the type of phospholipid membrane. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-2 |
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c2cp43099a |