Intestinal mucins: the binding sites forsalmonella typhimurium

Mucus-bacterial interactions in the gastrointestinal tract and their impact on subsequent enteric infections are poorly delineated. In the present study, we have examined the binding ofSalmonella typhimurium to rat intestinal mucus and characterized a mucus protein (Mucus-Rs) which specifically bind...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 204; no. 1-2; p. 107
Main Authors Vimal, Dharam, Khullar, Madhu, Gupta, Sudhir, Ganguly, Nirmalr
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.01.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mucus-bacterial interactions in the gastrointestinal tract and their impact on subsequent enteric infections are poorly delineated. In the present study, we have examined the binding ofSalmonella typhimurium to rat intestinal mucus and characterized a mucus protein (Mucus-Rs) which specifically binds to S. typhimurium. Both virulent (1402/84), and avirulent (SF 1835) S. typhimurium were observed to bind to crude mucus, however, the virulent strain showed 6 fold more binding as compared to avirulent strain. Fractionation of crude mucus on sepharose CL-6B resolved it into three major peaks. Maximal bacterial binding was observed with a high mol. wt. glycoprotein corresponding to neutral mucin. SDS-PAGE of purified protein (termed Mucus-Rs) under non reducing conditions showed it to be a homogenous glycoprotein (mol. wt. 250 kDa), while under reducing conditions, three bands corresponding to mol. wt. of 118,75 and 60 kDa were observed. Pretreatment of Mucus-Rs with pronase, trypsin and sodium metaperiodate markedly inhibited bacterial binding. GLC analysis of Mucus-Rs showed it to contain Mannose, Glucose, Galactose, Glucosamine, Galactosamine and Sialic acid as main sugars. Competitive binding in the presence of various sugars and lectins indicated the involvement of mannose in the mucus-bacterial interactions. The Mucus-Rs binding was highly specific for S. typhimurium; no significant binding was seen with E.coliand V. cholerae. Thus, we conclude that S. typhimurium specifically binds to a 250 kDa neutral mucin of intestinal tract. This binding appears to occur via specific adhesin-receptor interactions involving bacterial pili and mannose of neutral mucin.[PUBLICATION ABSTRACT]
ISSN:0300-8177
1573-4919
DOI:10.1023/A:1007015312036