Quantum Imaging and Metrology with Undetected squeezed Photons: Noise Canceling and Noise Based Imaging
In this work a quantum imaging setup based on undetected squeezed photons is employed for metrological applications such as sensitive phase measurement and quantum imaging. In spite of the traditional quantum imaging with undetected photons, introduced by A. Zeilinger et. al, the proposed setup is e...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
07.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
Cover
Summary: | In this work a quantum imaging setup based on undetected squeezed photons is employed for metrological applications such as sensitive phase measurement and quantum imaging. In spite of the traditional quantum imaging with undetected photons, introduced by A. Zeilinger et. al, the proposed setup is equipped by a homodyne detection and also the brightness of the quantum light is enhanced by an optical parametric oscillator (OPO). Introducing OPO may be diminish the validity of the low gain approximation, so a theoretical approach beyond this approximation is introduced. Due to the resource of squeezing, the results reveal the higher amount of signal to noise ratio, as a measure of image quality and phase-measurement accuracy. Accordingly, an imaging protocol is introduced to suppress the background noises, effectively. Interestingly, This protocol provides a way to extract the image information which is encoded in the quantum fluctuation (noise). Therefore, non-disruptive imaging is achievable, which is noteworthy subject in the field of bio-imaging of sensitive and low damage threshold living cells. |
---|---|
Bibliography: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
ISSN: | 2331-8422 |