Calibrating for the Future:Enhancing Calorimeter Longevity with Deep Learning
In the realm of high-energy physics, the longevity of calorimeters is paramount. Our research introduces a deep learning strategy to refine the calibration process of calorimeters used in particle physics experiments. We develop a Wasserstein GAN inspired methodology that adeptly calibrates the misa...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the realm of high-energy physics, the longevity of calorimeters is paramount. Our research introduces a deep learning strategy to refine the calibration process of calorimeters used in particle physics experiments. We develop a Wasserstein GAN inspired methodology that adeptly calibrates the misalignment in calorimeter data due to aging or other factors. Leveraging the Wasserstein distance for loss calculation, this innovative approach requires a significantly lower number of events and resources to achieve high precision, minimizing absolute errors effectively. Our work extends the operational lifespan of calorimeters, thereby ensuring the accuracy and reliability of data in the long term, and is particularly beneficial for experiments where data integrity is crucial for scientific discovery. |
---|---|
ISSN: | 2331-8422 |