Automated Workflow for Accurate High-Throughput GW Calculations
The GW approximation represents the state-of-the-art ab-initio method for computing excited-state properties. Its execution requires control over a larger number of (often interdependent) parameters, and therefore its application in high-throughput studies is hindered by the intricate and time-consu...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
21.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The GW approximation represents the state-of-the-art ab-initio method for computing excited-state properties. Its execution requires control over a larger number of (often interdependent) parameters, and therefore its application in high-throughput studies is hindered by the intricate and time-consuming convergence process across a multi-dimensional parameter space. To address these challenges, here we develop a fully-automated open-source workflow for G\(_0\)W\(_0\) calculations within the AiiDA-VASP plugin architecture. The workflow is based on an efficient estimation of the errors on the quasi-particle (QP) energies due to basis-set truncation and the pseudo-potential norm violation, which allows a reduction of the dimensionality of the parameter space and avoids the need for multi-dimensional convergence searches. Protocol validation is conducted through a systematic comparison against established experimental and state-of-the-art GW data. To demonstrate the effectiveness of the approach, we construct a database of QP energies for a diverse dataset of over 320 bulk structures. The openly accessible workflow and resulting dataset can serve as a valuable resource and reference for conducting accurate data-driven research. |
---|---|
ISSN: | 2331-8422 |