Influencia de Machine Learning en la Evaluación de Riesgo Crediticio en Entidades Financieras: Una exhaustiva Revisión Sistemática y Bibliométrica
Rigorous exclusion and quality criteria were applied, resulting in the selection of 62 articles for analysis. The research documents in detail the most relevant ML methodologies and techniques to prevent credit risk, providing crucial data for financial institutions. Keywords: Machine Learning; Cred...
Saved in:
Published in | RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação no. E72; pp. 451 - 470 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Spanish |
Published |
Lousada
Associação Ibérica de Sistemas e Tecnologias de Informacao
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Rigorous exclusion and quality criteria were applied, resulting in the selection of 62 articles for analysis. The research documents in detail the most relevant ML methodologies and techniques to prevent credit risk, providing crucial data for financial institutions. Keywords: Machine Learning; Credit Risk; Financial Institutions; Algorithms; Systematic Literature Review. 1. Asimismo, Bi y Liang (2022), en su estudio "Risk Assessment of Operator's Big Data Internet of Things Credit Financial Management Based on Machine Learning", subrayan la crucial importancia de la innovación en la evaluación del riesgo crediticio para las instituciones financieras. |
---|---|
ISSN: | 1646-9895 |