The MLE is minimax optimal for LGC
We revisit the recently introduced Local Glivenko-Cantelli setting, which studies distribution-dependent uniform convegence rates of the Maximum Likelihood Estimator (MLE). In this work, we investigate generalizations of this setting where arbitrary estimators are allowed rather than just the MLE. C...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
02.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We revisit the recently introduced Local Glivenko-Cantelli setting, which studies distribution-dependent uniform convegence rates of the Maximum Likelihood Estimator (MLE). In this work, we investigate generalizations of this setting where arbitrary estimators are allowed rather than just the MLE. Can a strictly larger class of measures be learned? Can better risk decay rates be obtained? We provide exhaustive answers to these questions -- which are both negative, provided the learner is barred from exploiting some infinite-dimensional pathologies. On the other hand, allowing such exploits does lead to a strictly larger class of learnable measures. |
---|---|
ISSN: | 2331-8422 |