Deep Neural Network-Based Sign Language Recognition: A Comprehensive Approach Using Transfer Learning with Explainability

To promote inclusion and ensuring effective communication for those who rely on sign language as their main form of communication, sign language recognition (SLR) is crucial. Sign language recognition (SLR) seamlessly incorporates with diverse technology, enhancing accessibility for the deaf communi...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ridwan, A E M, Mushfiqul Islam Chowdhury, Mekhala, Mariam Mary, Md Tahmid Chowdhury Abir
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To promote inclusion and ensuring effective communication for those who rely on sign language as their main form of communication, sign language recognition (SLR) is crucial. Sign language recognition (SLR) seamlessly incorporates with diverse technology, enhancing accessibility for the deaf community by facilitating their use of digital platforms, video calls, and communication devices. To effectively solve this problem, we suggest a novel solution that uses a deep neural network to fully automate sign language recognition. This methodology integrates sophisticated preprocessing methodologies to optimise the overall performance. The architectures resnet, inception, xception, and vgg are utilised to selectively categorise images of sign language. We prepared a DNN architecture and merged it with the pre-processing architectures. In the post-processing phase, we utilised the SHAP deep explainer, which is based on cooperative game theory, to quantify the influence of specific features on the output of a machine learning model. Bhutanese-Sign-Language (BSL) dataset was used for training and testing the suggested technique. While training on Bhutanese-Sign-Language (BSL) dataset, overall ResNet50 with the DNN model performed better accuracy which is 98.90%. Our model's ability to provide informational clarity was assessed using the SHAP (SHapley Additive exPlanations) method. In part to its considerable robustness and reliability, the proposed methodological approach can be used to develop a fully automated system for sign language recognition.
ISSN:2331-8422