Deep Neural Network-Based Sign Language Recognition: A Comprehensive Approach Using Transfer Learning with Explainability
To promote inclusion and ensuring effective communication for those who rely on sign language as their main form of communication, sign language recognition (SLR) is crucial. Sign language recognition (SLR) seamlessly incorporates with diverse technology, enhancing accessibility for the deaf communi...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To promote inclusion and ensuring effective communication for those who rely on sign language as their main form of communication, sign language recognition (SLR) is crucial. Sign language recognition (SLR) seamlessly incorporates with diverse technology, enhancing accessibility for the deaf community by facilitating their use of digital platforms, video calls, and communication devices. To effectively solve this problem, we suggest a novel solution that uses a deep neural network to fully automate sign language recognition. This methodology integrates sophisticated preprocessing methodologies to optimise the overall performance. The architectures resnet, inception, xception, and vgg are utilised to selectively categorise images of sign language. We prepared a DNN architecture and merged it with the pre-processing architectures. In the post-processing phase, we utilised the SHAP deep explainer, which is based on cooperative game theory, to quantify the influence of specific features on the output of a machine learning model. Bhutanese-Sign-Language (BSL) dataset was used for training and testing the suggested technique. While training on Bhutanese-Sign-Language (BSL) dataset, overall ResNet50 with the DNN model performed better accuracy which is 98.90%. Our model's ability to provide informational clarity was assessed using the SHAP (SHapley Additive exPlanations) method. In part to its considerable robustness and reliability, the proposed methodological approach can be used to develop a fully automated system for sign language recognition. |
---|---|
ISSN: | 2331-8422 |