Universal and non-universal large deviations in critical systems
Rare events play a crucial role in understanding complex systems. Characterizing and analyzing them in scale-invariant situations is challenging due to strong correlations. In this work, we focus on characterizing the tails of probability distribution functions (PDFs) for these systems. Using a vari...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
04.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Rare events play a crucial role in understanding complex systems. Characterizing and analyzing them in scale-invariant situations is challenging due to strong correlations. In this work, we focus on characterizing the tails of probability distribution functions (PDFs) for these systems. Using a variety of methods, perturbation theory, functional renormalization group, hierarchical models, large \(n\) limit, and Monte Carlo simulations, we investigate universal rare events of critical \(O(n)\) systems. Additionally, we explore the crossover from universal to nonuniversal behavior in PDF tails, extending Cramér's series to strongly correlated variables. Our findings highlight the universal and nonuniversal aspects of rare event statistics and challenge existing assumptions about power-law corrections to the leading stretched exponential decay in these tails. |
---|---|
ISSN: | 2331-8422 |