Dihadron azimuthal asymmetry and light-quark dipole moments at the Electron-Ion Collider

We propose a novel method to probe light-quark dipole moments by examining the azimuthal asymmetries between a collinear pair of hadrons in semi-inclusive deep inelastic lepton scattering off an unpolarized proton target at the Electron-Ion Collider. These asymmetries provide a means to observe tran...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Xin-Kai, Wen, Yan, Bin, Yu, Zhite, C -P Yuan
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 14.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a novel method to probe light-quark dipole moments by examining the azimuthal asymmetries between a collinear pair of hadrons in semi-inclusive deep inelastic lepton scattering off an unpolarized proton target at the Electron-Ion Collider. These asymmetries provide a means to observe transversely polarized quarks, which arise exclusively from the interference between the dipole and the Standard Model interactions, thereby depending linearly on the dipole couplings. We demonstrate that this novel approach can enhance current constraints on light-quark dipole operators by an order of magnitude, free from contamination of other new physics effects. Furthermore, it allows for a simultaneous determination of both the real and imaginary parts of the dipole couplings, offering a new avenue for investigating potential \(CP\)-violating effects at high energies.
ISSN:2331-8422