Partial Adaptive Indexing for Approximate Query Answering
In data exploration, users need to analyze large data files quickly, aiming to minimize data-to-analysis time. While recent adaptive indexing approaches address this need, they are cases where demonstrate poor performance. Particularly, during the initial queries, in regions with a high density of o...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
26.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In data exploration, users need to analyze large data files quickly, aiming to minimize data-to-analysis time. While recent adaptive indexing approaches address this need, they are cases where demonstrate poor performance. Particularly, during the initial queries, in regions with a high density of objects, and in very large files over commodity hardware. This work introduces an approach for adaptive indexing driven by both query workload and user-defined accuracy constraints to support approximate query answering. The approach is based on partial index adaptation which reduces the costs associated with reading data files and refining indexes. We leverage a hierarchical tile-based indexing scheme and its stored metadata to provide efficient query evaluation, ensuring accuracy within user-specified bounds. Our preliminary evaluation demonstrates improvement on query evaluation time, especially during initial user exploration. |
---|---|
ISSN: | 2331-8422 |