The Role of Temporal Hierarchy in Spiking Neural Networks

Spiking Neural Networks (SNNs) have the potential for rich spatio-temporal signal processing thanks to exploiting both spatial and temporal parameters. The temporal dynamics such as time constants of the synapses and neurons and delays have been recently shown to have computational benefits that hel...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Moro, Filippo, Aceituno, Pau Vilimelis, Kriener, Laura, Payvand, Melika
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spiking Neural Networks (SNNs) have the potential for rich spatio-temporal signal processing thanks to exploiting both spatial and temporal parameters. The temporal dynamics such as time constants of the synapses and neurons and delays have been recently shown to have computational benefits that help reduce the overall number of parameters required in the network and increase the accuracy of the SNNs in solving temporal tasks. Optimizing such temporal parameters, for example, through gradient descent, gives rise to a temporal architecture for different problems. As has been shown in machine learning, to reduce the cost of optimization, architectural biases can be applied, in this case in the temporal domain. Such inductive biases in temporal parameters have been found in neuroscience studies, highlighting a hierarchy of temporal structure and input representation in different layers of the cortex. Motivated by this, we propose to impose a hierarchy of temporal representation in the hidden layers of SNNs, highlighting that such an inductive bias improves their performance. We demonstrate the positive effects of temporal hierarchy in the time constants of feed-forward SNNs applied to temporal tasks (Multi-Time-Scale XOR and Keyword Spotting, with a benefit of up to 4.1% in classification accuracy). Moreover, we show that such architectural biases, i.e. hierarchy of time constants, naturally emerge when optimizing the time constants through gradient descent, initialized as homogeneous values. We further pursue this proposal in temporal convolutional SNNs, by introducing the hierarchical bias in the size and dilation of temporal kernels, giving rise to competitive results in popular temporal spike-based datasets.
ISSN:2331-8422