Integrated Mode-Hop-Free Tunable Lasers at 780 nm for Chip-Scale Classical and Quantum Photonic Applications
In the last decade, remarkable advances in integrated photonic technologies have enabled table-top experiments and instrumentation to be scaled down to compact chips with significant reduction in size, weight, power consumption, and cost. Here, we demonstrate an integrated continuously tunable laser...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
22.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the last decade, remarkable advances in integrated photonic technologies have enabled table-top experiments and instrumentation to be scaled down to compact chips with significant reduction in size, weight, power consumption, and cost. Here, we demonstrate an integrated continuously tunable laser in a heterogeneous gallium arsenide-on-silicon nitride (GaAs-on-SiN) platform that emits in the far-red radiation spectrum near 780 nm, with 20 nm tuning range, <6 kHz intrinsic linewidth, and a >40 dB side-mode suppression ratio. The GaAs optical gain regions are heterogeneously integrated with low-loss SiN waveguides. The narrow linewidth lasing is achieved with an extended cavity consisting of a resonator-based Vernier mirror and a phase shifter. Utilizing synchronous tuning of the integrated heaters, we show mode-hop-free wavelength tuning over a range larger than 100 GHz (200 pm). To demonstrate the potential of the device, we investigate two illustrative applications: (i) the linear characterization of a silicon nitride microresonator designed for entangled-photon pair generation, and (ii) the absorption spectroscopy and locking to the D1 and D2 transition lines of 87-Rb. The performance of the proposed integrated laser holds promise for a broader spectrum of both classical and quantum applications in the visible range, encompassing communication, control, sensing, and computing. |
---|---|
ISSN: | 2331-8422 |