CAVE: Controllable Authorship Verification Explanations

Authorship Verification (AV) (do two documents have the same author?) is essential in many sensitive real-life applications. AV is often used in proprietary domains that require a private, offline model, making SOTA online models like ChatGPT undesirable. Current offline models however have lower do...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ramnath, Sahana, Pandey, Kartik, Boschee, Elizabeth, Ren, Xiang
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Authorship Verification (AV) (do two documents have the same author?) is essential in many sensitive real-life applications. AV is often used in proprietary domains that require a private, offline model, making SOTA online models like ChatGPT undesirable. Current offline models however have lower downstream utility due to low accuracy/scalability (eg: traditional stylometry AV systems) and lack of accessible post-hoc explanations. In this work, we take the first step to address the above challenges with our trained, offline Llama-3-8B model CAVE (Controllable Authorship Verification Explanations): CAVE generates free-text AV explanations that are controlled to be (1) structured (can be decomposed into sub-explanations in terms of relevant linguistic features), and (2) easily verified for explanation-label consistency (via intermediate labels in sub-explanations). We first engineer a prompt that can generate silver training data from a SOTA teacher model in the desired CAVE output format. We then filter and distill this data into a pretrained Llama-3-8B, our carefully selected student model. Results on three difficult AV datasets IMDb62, Blog-Auth, and Fanfiction show that CAVE generates high quality explanations (as measured by automatic and human evaluation) as well as competitive task accuracies.
ISSN:2331-8422