Rephasing spectral diffusion in time-bin spin-spin entanglement protocols
Generating high fidelity spin-spin entanglement is an essential task of quantum repeater networks for the distribution of quantum information across long distances. Solid-state based spin-photon interfaces are promising candidates to realize nodes of a quantum network, but are often limited by spect...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Generating high fidelity spin-spin entanglement is an essential task of quantum repeater networks for the distribution of quantum information across long distances. Solid-state based spin-photon interfaces are promising candidates to realize nodes of a quantum network, but are often limited by spectral diffusion of the optical transition, which results in phase errors on the entangled states. Here, we introduce a method to correct phase errors from quasi-static frequency fluctuations after the entangled state is generated, by shelving the emitters in the excited state to refocus the unknown phase. For quasi-static frequency fluctuations, the fidelity is determined only by the lifetime of the excited state used for shelving, making it particularly suitable for systems with a long-lived shelving state with correlated spectral diffusion. Such a shelving state may be found in Kramers doublet systems such as rare-earth emitters and color centers in Si or SiC interfaced with nanophotonic cavities with a strongly frequency-dependent Purcell enhancement. The protocol can be used to generate high-fidelity entangled spin pairs without reducing the rate of entanglement generation. |
---|---|
ISSN: | 2331-8422 |