Nature of long-lived moiré interlayer excitons in electrically tunable MoS\(_{2}\)/MoSe\(_{2}\) heterobilayers
Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of emission energy, lifetime, and location. Device...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
04.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of emission energy, lifetime, and location. Device material and geometry impacts the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS\(_{2}\)/MoSe\(_{2}\) heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of long optical lifetime and valley polarization retention makes MoS\(_{2}\)/MoSe\(_{2}\) heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing. |
---|---|
ISSN: | 2331-8422 |