Towards Privacy-Aware and Personalised Assistive Robots: A User-Centred Approach
The global increase in the elderly population necessitates innovative long-term care solutions to improve the quality of life for vulnerable individuals while reducing caregiver burdens. Assistive robots, leveraging advancements in Machine Learning, offer promising personalised support. However, the...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
23.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The global increase in the elderly population necessitates innovative long-term care solutions to improve the quality of life for vulnerable individuals while reducing caregiver burdens. Assistive robots, leveraging advancements in Machine Learning, offer promising personalised support. However, their integration into daily life raises significant privacy concerns. Widely used frameworks like the Robot Operating System (ROS) historically lack inherent privacy mechanisms, complicating data-driven approaches in robotics. This research pioneers user-centric, privacy-aware technologies such as Federated Learning (FL) to advance assistive robotics. FL enables collaborative learning without sharing sensitive data, addressing privacy and scalability issues. This work includes developing solutions for smart wheelchair assistance, enhancing user independence and well-being. By tackling challenges related to non-stationary data and heterogeneous environments, the research aims to improve personalisation and user experience. Ultimately, it seeks to lead the responsible integration of assistive robots into society, enhancing the quality of life for elderly and care-dependent individuals. |
---|---|
ISSN: | 2331-8422 |