On the Gromov width of complements of Lagrangian tori
An integral product Lagrangian torus in the standard symplectic \(\mathbb{C}^2\) is defined to be a subset \(\{ \pi|z_1|^2 = k, \, \pi|z_2|^2 =l \}\) with \(k,l \in \mathbb{N}\). Let \(\mathcal{L}\) be the union of all integral product Lagrangian tori. We compute the Gromov width of complements \(B(...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An integral product Lagrangian torus in the standard symplectic \(\mathbb{C}^2\) is defined to be a subset \(\{ \pi|z_1|^2 = k, \, \pi|z_2|^2 =l \}\) with \(k,l \in \mathbb{N}\). Let \(\mathcal{L}\) be the union of all integral product Lagrangian tori. We compute the Gromov width of complements \(B(R) \setminus \mathcal{L}\) for some small \(R\), where \(B(R)\) denotes the round ball of capacity \(R\). |
---|---|
ISSN: | 2331-8422 |