End-to-End Autoencoder for Drill String Acoustic Communications
Drill string communications are important for drilling efficiency and safety. The design of a low latency drill string communication system with high throughput and reliability remains an open challenge. In this paper a deep learning autoencoder (AE) based end-to-end communication system, where tran...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Drill string communications are important for drilling efficiency and safety. The design of a low latency drill string communication system with high throughput and reliability remains an open challenge. In this paper a deep learning autoencoder (AE) based end-to-end communication system, where transmitter and receiver implemented as feed forward neural networks, is proposed for acousticdrill string communications. Simulation shows that the AE system is able to outperform a baseline non-contiguous OFDM system in terms of BER and PAPR, operating with lower latency. |
---|---|
ISSN: | 2331-8422 |