Linear stability of cylindrical, multicomponent vesicles
Vesicles are important surrogate structures made up of multiple phospholipids and cholesterol distributed in the form of a lipid bilayer. Tubular vesicles can undergo pearling i.e., formation of beads on the liquid thread akin to the Rayleigh-Plateau instability. Previous studies have inspected the...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vesicles are important surrogate structures made up of multiple phospholipids and cholesterol distributed in the form of a lipid bilayer. Tubular vesicles can undergo pearling i.e., formation of beads on the liquid thread akin to the Rayleigh-Plateau instability. Previous studies have inspected the effects of surface tension on the pearling instabilities of single-component vesicles. In this study, we perform a linear stability analysis on a multicomponent cylindrical vesicle. We solve the Stokes equations along with the Cahn-Hilliard equations to develop the linearized dynamic equations governing the vesicle shape and surface concentration fields. This helps us show that multicomponent vesicles can undergo pearling, buckling, and wrinkling even in the absence of surface tension, which is a significantly different result from studies on single-component vesicles. This behaviour arises due to the competition between the free energies of phase separation, line tension, and bending for this multi-phospholipid system. We determine the conditions under which axisymmetric and non-axisymmetric modes are dominant, and supplement our results with an energy analysis that shows the sources for these instabilities. We further show that these trends qualitatively match recent experiments. |
---|---|
ISSN: | 2331-8422 |