Optimal ANN-SNN Conversion with Group Neurons

Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks, offering unique characteristics such as binary outputs, high sparsity, and biological plausibility. However, the lack of effective learning algorithms remains a challenge for SNNs. For instance, while con...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Lv, Liuzhenghao, Fang, Wei, Li, Yuan, Tian, Yonghong
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 29.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks, offering unique characteristics such as binary outputs, high sparsity, and biological plausibility. However, the lack of effective learning algorithms remains a challenge for SNNs. For instance, while converting artificial neural networks (ANNs) to SNNs circumvents the need for direct training of SNNs, it encounters issues related to conversion errors and high inference time delays. In order to reduce or even eliminate conversion errors while decreasing inference time-steps, we have introduced a novel type of neuron called Group Neurons (GNs). One GN is composed of multiple Integrate-and-Fire (IF) neurons as members, and its neural dynamics are meticulously designed. Based on GNs, we have optimized the traditional ANN-SNN conversion framework. Specifically, we replace the IF neurons in the SNNs obtained by the traditional conversion framework with GNs. The resulting SNNs, which utilize GNs, are capable of achieving accuracy levels comparable to ANNs even within extremely short inference time-steps. The experiments on CIFAR10, CIFAR100, and ImageNet datasets demonstrate the superiority of the proposed methods in terms of both inference accuracy and latency. Code is available at https://github.com/Lyu6PosHao/ANN2SNN_GN.
ISSN:2331-8422