Joint distribution of the cokernels of random \(p\)-adic matrices II

In this paper, we study the combinatorial relations between the cokernels \(\text{cok}(A_n+px_iI_n)\) (\(1 \le i \le m\)) where \(A_n\) is an \(n \times n\) matrix over the ring of \(p\)-adic integers \(\mathbb{Z}_p\), \(I_n\) is the \(n \times n\) identity matrix and \(x_1, \cdots, x_m\) are elemen...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Jung, Jiwan, Lee, Jungin
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 14.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study the combinatorial relations between the cokernels \(\text{cok}(A_n+px_iI_n)\) (\(1 \le i \le m\)) where \(A_n\) is an \(n \times n\) matrix over the ring of \(p\)-adic integers \(\mathbb{Z}_p\), \(I_n\) is the \(n \times n\) identity matrix and \(x_1, \cdots, x_m\) are elements of \( \mathbb{Z}_p\) whose reductions modulo \(p\) are distinct. For a positive integer \(m \le 4\) and given \(x_1, \cdots, x_m \in \mathbb{Z}_p\), we determine the set of \(m\)-tuples of finitely generated \(\mathbb{Z}_p\)-modules \((H_1, \cdots, H_m)\) for which \((\text{cok}(A_n+px_1I_n), \cdots, \text{cok}(A_n+px_mI_n)) = (H_1, \cdots, H_m)\) for some matrix \(A_n\). We also prove that if \(A_n\) is an \(n \times n\) Haar random matrix over \(\mathbb{Z}_p\) for each positive integer \(n\), then the joint distribution of \(\text{cok}(A_n+px_iI_n)\) (\(1 \le i \le m\)) converges as \(n \rightarrow \infty\).
ISSN:2331-8422
DOI:10.48550/arxiv.2304.03583