Covert Quantum Communication Over Optical Channels

We explore covert communication of qubits over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical channels, including optical. Covert communication ensures that an adversary is unable to detect the presence of transmissions, which are concealed in channel...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Anderson, Evan J D, Eyre, Christopher K, Dailey, Isabel M, Rozpędek, Filip, Bash, Boulat A
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We explore covert communication of qubits over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical channels, including optical. Covert communication ensures that an adversary is unable to detect the presence of transmissions, which are concealed in channel noise. We show a \emph{square root law} (SRL) for quantum covert communication similar to that for classical: \(\propto\sqrt{n}\) qubits can be transmitted covertly and reliably over \(n\) uses of an optical channel. Our achievability proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication and entanglement distribution. Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels. Finally, we believe that the gap between our lower and upper bounds for the number of reliable covert qubits can be mitigated by improving the quantum error correction codes and quantum channel capacity bounds.
AbstractList We explore covert communication of qubits over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical channels, including optical. Covert communication ensures that an adversary is unable to detect the presence of transmissions, which are concealed in channel noise. We show a \emph{square root law} (SRL) for quantum covert communication similar to that for classical: \(\propto\sqrt{n}\) qubits can be transmitted covertly and reliably over \(n\) uses of an optical channel. Our achievability proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication and entanglement distribution. Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels. Finally, we believe that the gap between our lower and upper bounds for the number of reliable covert qubits can be mitigated by improving the quantum error correction codes and quantum channel capacity bounds.
Author Rozpędek, Filip
Eyre, Christopher K
Anderson, Evan J D
Dailey, Isabel M
Bash, Boulat A
Author_xml – sequence: 1
  givenname: Evan
  surname: Anderson
  middlename: J D
  fullname: Anderson, Evan J D
– sequence: 2
  givenname: Christopher
  surname: Eyre
  middlename: K
  fullname: Eyre, Christopher K
– sequence: 3
  givenname: Isabel
  surname: Dailey
  middlename: M
  fullname: Dailey, Isabel M
– sequence: 4
  givenname: Filip
  surname: Rozpędek
  fullname: Rozpędek, Filip
– sequence: 5
  givenname: Boulat
  surname: Bash
  middlename: A
  fullname: Bash, Boulat A
BookMark eNqNiksKwjAUAIMoWLV3CLgupC9pa9dBcVcE9yVIxJbkpebj-c3CA7gahpkdWaNDvSIFcF5XJwGwJWUIM2MM2g6ahhcEpPtoH-ktKYzJUumsTTg9VJwc0iE3Oiwxu6HypRC1CQeyeSoTdPnjnhwv57u8Vot376RDHGeXPOY0Ql-Lvq07Jvh_1xcgDDWz
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29149617043
IEDL.DBID BENPR
IngestDate Fri Nov 08 20:46:50 EST 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29149617043
OpenAccessLink https://www.proquest.com/docview/2914961704?pq-origsite=%requestingapplication%
PQID 2914961704
PQPubID 2050157
ParticipantIDs proquest_journals_2914961704
PublicationCentury 2000
PublicationDate 20240916
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: 20240916
  day: 16
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.559605
SecondaryResourceType preprint
Snippet We explore covert communication of qubits over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical channels,...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Channel noise
Channels
Communication
Lower bounds
Qubits (quantum computing)
Title Covert Quantum Communication Over Optical Channels
URI https://www.proquest.com/docview/2914961704
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n6itJaDXYJuk6e5JsOxaBNsqCr2VvHqzbru7V397J2GriNBjGMiLzHwzk28SgLseT1wqlKZMJpqKPlvSxHCLMY82qeVuqXRgW0zk-EM8zwfzJuFWNrTKnU0Mhtp-GZ8jv2cp-vL-9XDxUKyp_zXK3642X2i0IGYYKfQiiB-zyeztJ8vC5BB9Zv7P0Ab0yI8hnqnCbU7gwK1O4TCQLk15Bmzk-ZMVea1xefUn-VOsQaYoI9Mi5JqJLwJYIYydw22evY_GdDfQojkM5eJ36vwCIozq3SUQrymc24E0ygrhmFJDj6bKooo4I8QVdPb1dL1f3IYjhujriQ192YGo2tTuBtGz0l1oJflTt9kobL18Z1vLlHnl
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE2I3nuIxIBJcI1iSZe2Jw0QpMDaQhrRblSbZjVHW9v_PjjoQQtrZUl6K_dnO5xjg5k5GPlYm50JHOVc9MeeRlQ5jntzGTvq5yQPbYqzTD_U868-ahFvZ0CrXNjEYavdlKUd-K2L05en3cHVffHPqGkWvq00LjW1oK4lYTZXiyeNPjkXoAXrM8p-ZDdiR7EH7zRR-uQ9bfnEAO4FyactDEENiT1bsvcbN1Z_sT6kGm6CMTYqQaWZUArBAEDuC6-RhOkz5eqKsuQpl9rtweQwtjOn9CTDSEyldX1vjlPLCmAFhqXGoIN4qdQrdTSOdbRZfwW46fR1lo6fxyzl0BOIwURx6ugutaln7C8TRKr8Mh7UC2Np5WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covert+Quantum+Communication+Over+Optical+Channels&rft.jtitle=arXiv.org&rft.au=Anderson%2C+Evan+J+D&rft.au=Eyre%2C+Christopher+K&rft.au=Dailey%2C+Isabel+M&rft.au=Rozp%C4%99dek%2C+Filip&rft.date=2024-09-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422