Covert Quantum Communication Over Optical Channels

We explore covert communication of qubits over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical channels, including optical. Covert communication ensures that an adversary is unable to detect the presence of transmissions, which are concealed in channel...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Anderson, Evan J D, Eyre, Christopher K, Dailey, Isabel M, Rozpędek, Filip, Bash, Boulat A
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We explore covert communication of qubits over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical channels, including optical. Covert communication ensures that an adversary is unable to detect the presence of transmissions, which are concealed in channel noise. We show a \emph{square root law} (SRL) for quantum covert communication similar to that for classical: \(\propto\sqrt{n}\) qubits can be transmitted covertly and reliably over \(n\) uses of an optical channel. Our achievability proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication and entanglement distribution. Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels. Finally, we believe that the gap between our lower and upper bounds for the number of reliable covert qubits can be mitigated by improving the quantum error correction codes and quantum channel capacity bounds.
ISSN:2331-8422