Detecting the edges of galaxies with deep learning

Galaxy edges or truncations are low-surface-brightness (LSB) features located in the galaxy outskirts that delimit the distance up to where the gas density enables efficient star formation. As such, they could be interpreted as a non-arbitrary means to determine the galaxy size and this is also rein...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Fernández, Jesús, Buitrago, Fernando, Sahelices, Benjamín
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 18.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Galaxy edges or truncations are low-surface-brightness (LSB) features located in the galaxy outskirts that delimit the distance up to where the gas density enables efficient star formation. As such, they could be interpreted as a non-arbitrary means to determine the galaxy size and this is also reinforced by the smaller scatter in the galaxy mass-size relation when comparing them with other size proxies. However, there are several problems attached to this novel metric, namely, the access to deep imaging and the need to contrast the surface brightness, color, and mass profiles to derive the edge position. While the first hurdle is already overcome by new ultra-deep galaxy observations, we hereby propose the use of machine learning (ML) algorithms to determine the position of these features for very large datasets. We compare the semantic segmentation by our deep learning (DL) models with the results obtained by humans for HST observations of a sample of 1052 massive (M\(_{\rm stellar}\) > 10\(^{10}\) M\(_{\odot}\)) galaxies at \(z < 1\). In addition, the concept of astronomic augmentations is introduced to endow the inputs of the networks with a physical meaning. Our findings suggest that similar performances than humans could be routinely achieved. The best results are obtained by combining the output of several neural networks using ensemble learning. Additionally, we find that using edge-aware loss functions allows for the networks to focus their optimization on the galaxy boundaries. The experiments reveal a great similarity between the segmentation performed by the AI compared to the human model. For the best model, an average dice of 0.8969 is achieved, while an average dice of 0.9104 is reached by the best ensemble. This methodology will be profusely used in future datasets, such as that of Euclid, to derive scaling relations that are expected to closely follow the galaxy mass assembly.
ISSN:2331-8422