A universal optical modulator for synthetic topologically tuneable structured matter
Topologically structured matter, such as metasurfaces and metamaterials, have given rise to impressive photonic functionality, fuelling diverse applications from microscopy and holography to encryption and communication. Presently these solutions are limited by their largely static nature and preset...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Topologically structured matter, such as metasurfaces and metamaterials, have given rise to impressive photonic functionality, fuelling diverse applications from microscopy and holography to encryption and communication. Presently these solutions are limited by their largely static nature and preset functionality, hindering applications that demand dynamic photonic systems with reconfigurable topologies. Here we demonstrate a universal optical modulator that implements topologically tuneable structured matter as virtual pixels derived from cascading low functionality tuneable devices, altering the paradigm of phase and amplitude control to encompass arbitrary spatially varying retarders in a synthetic structured matter device. Our approach opens unprecedented functionality that is user-defined with high flexibility, allowing our synthetic structured matter to act as an information carrier, beam generator, analyser, and corrector, opening an exciting path to tuneable topologies of light and matter. |
---|---|
ISSN: | 2331-8422 |