Scientific productivity as a random walk

The expectation that scientific productivity follows regular patterns over a career underpins many scholarly evaluations, including hiring, promotion and tenure, awards, and grant funding. However, recent studies of individual productivity patterns reveal a puzzle: on the one hand, the average numbe...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Zhang, Sam, LaBerge, Nicholas, Way, Samuel F, Larremore, Daniel B, Clauset, Aaron
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The expectation that scientific productivity follows regular patterns over a career underpins many scholarly evaluations, including hiring, promotion and tenure, awards, and grant funding. However, recent studies of individual productivity patterns reveal a puzzle: on the one hand, the average number of papers published per year robustly follows the "canonical trajectory" of a rapid rise to an early peak followed by a graduate decline, but on the other hand, only about 20% of individual researchers' productivity follows this pattern. We resolve this puzzle by modeling scientific productivity as a parameterized random walk, showing that the canonical pattern can be explained as a decrease in the variance in changes to productivity in the early-to-mid career. By empirically characterizing the variable structure of 2,085 productivity trajectories of computer science faculty at 205 PhD-granting institutions, spanning 29,119 publications over 1980--2016, we (i) discover remarkably simple patterns in both early-career and year-to-year changes to productivity, and (ii) show that a random walk model of productivity both reproduces the canonical trajectory in the average productivity and captures much of the diversity of individual-level trajectories. These results highlight the fundamental role of a panoply of contingent factors in shaping individual scientific productivity, opening up new avenues for characterizing how systemic incentives and opportunities can be directed for aggregate effect.
ISSN:2331-8422