Novel hydrodynamic cumulation mechanism caused by quantum shell effects
The computational and theoretical analysis carried out in this article demonstrates the existence of a nontrivial mechanism for the compression of a submicron-sized gas bubble formed by a gas of classical ions and a gas of degenerate electrons. This mechanism fundamentally differs from conventional...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
13.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The computational and theoretical analysis carried out in this article demonstrates the existence of a nontrivial mechanism for the compression of a submicron-sized gas bubble formed by a gas of classical ions and a gas of degenerate electrons. This mechanism fundamentally differs from conventional compression mechanisms. It is shown that taking into account the quantum effect of a large spatial scale in the distribution of electrons qualitatively changes the character of cumulative processes. Because of a large-scale electric field caused by quantum shell effects, the compression process is characterized by the formation of multiple shock waves. The values of gas temperature and pressure achieved during compression occur higher by two orders of magnitude as compared with the classical adiabatic regime. The analysis is carried out within the framework of the following model: the dynamics of the electron subsystem is described by equations of a quantum electron fluid, while the hydrodynamic approximation is adopted for the ionic subsystem. The large scale effect is taken into account by means of effective external field acting on electrons. The theoretical analysis carried out within this approach clarifies the nature of the cumulative process in the system under consideration; some quantitative characteristics obtained with numerical simulation are presented. The possibility of experimental observation of this cumulative mechanism is analyzed. It is suggested that the manifestation of the effect can be observed during laser compression of a system of submicron targets by measuring the neutron yield. |
---|---|
ISSN: | 2331-8422 |