The landscape of BRCA1 and BRCA2 large rearrangements in an international cohort of over 20000 ovarian tumors identified using next‐generation sequencing

BackgroundApproximately half of ovarian tumors have defects within the homologous recombination repair pathway. Tumors carrying pathogenic variants (PVs) in BRCA1/BRCA2 are more likely to respond to poly‐ADP ribose polymerase (PARP) inhibitor treatment. Large rearrangements (LRs) are a challenging c...

Full description

Saved in:
Bibliographic Details
Published inGenes chromosomes & cancer Vol. 62; no. 10; pp. 589 - 596
Main Authors Jones, Melanie A, Timms, Kirsten M, Hatcher, Shanell, Cogan, Elizabeth S, Comeaux, Matthew S, Perry, Michael, Morris, Brian, Swedlund, Brad, Elks, Cathy E, Pierre Lao‐Sirieix, Dearden, Simon, Egile, Coumaran, Brown, Jessica S, Harrington, Elizabeth A, Hodgson, Darren, Stern, Matt, Slavin, Thomas P, Debora Mancini‐DiNardo
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BackgroundApproximately half of ovarian tumors have defects within the homologous recombination repair pathway. Tumors carrying pathogenic variants (PVs) in BRCA1/BRCA2 are more likely to respond to poly‐ADP ribose polymerase (PARP) inhibitor treatment. Large rearrangements (LRs) are a challenging class of variants to identify and characterize in tumor specimens and may therefore be underreported. This study describes the prevalence of pathogenic BRCA1/BRCA2 LRs in ovarian tumors and discusses the importance of their identification using a comprehensive testing strategy.MethodsSequencing and LR analyses of BRCA1/BRCA2 were conducted in 20 692 ovarian tumors received between March 18, 2016 and February 14, 2023 for MyChoice CDx testing. MyChoice CDx uses NGS dosage analysis to detect LRs in BRCA1/BRCA2 genes using dense tiling throughout the coding regions and limited flanking regions.ResultsOf the 2217 PVs detected, 6.3% (N = 140) were LRs. Overall, 0.67% of tumors analyzed carried a pathogenic LR. The majority of detected LRs were deletions (89.3%), followed by complex LRs (5.7%), duplications (4.3%), and retroelement insertions (0.7%). Notably, 25% of detected LRs encompassed a single or partial single exon. This study identified 84 unique LRs, 2 samples each carried 2 unique LRs in the same gene. We identified 17 LRs that occurred in multiple samples, some of which were specific to certain ancestries. Several cases presented here illustrate the intricacies involved in characterizing LRs, particularly when multiple events occur within the same gene.ConclusionsOver 6% of PVs detected in the ovarian tumors analyzed were LRs. It is imperative for laboratories to utilize testing methodologies that will accurately detect LRs at a single exon resolution to optimize the identification of patients who may benefit from PARP inhibitor treatment.
ISSN:1045-2257
1098-2264
DOI:10.1002/gcc.23150