Propulsion-Free Cross-Track Control of a LEO Small-Satellite Constellation with Differential Drag
In this work, we achieve propellantless control of both cross-track and along-track separation of a satellite formation by manipulating atmospheric drag. Increasing the differential drag of one satellite with respect to another directly introduces along-track separation, while cross-track separation...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
24.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, we achieve propellantless control of both cross-track and along-track separation of a satellite formation by manipulating atmospheric drag. Increasing the differential drag of one satellite with respect to another directly introduces along-track separation, while cross-track separation can be achieved by taking advantage of higher-order terms in the Earth's gravitational field that are functions of altitude. We present an algorithm for solving an n-satellite formation flying problem based on linear programming. We demonstrate this algorithm in a receeding-horizon control scheme in the presence of disturbances and modeling errors in a high-fidelity closed-loop orbital dynamics simulation. Our results show that separation distances of hundreds of kilometers can be achieved by a small-satellite formation in low-Earth orbit over a few months. |
---|---|
ISSN: | 2331-8422 |