Dark Matter Detection with Strongly Correlated Topological Materials: Flatband Effect
Dirac materials have been proposed as a new class of electron-based detectors for light dark-matter (DM) scattering or absorption, with predicted sensitivities far exceeding superconductors and superfluid helium. The superiority of Dirac materials originates from a significantly reduced in-medium di...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
31.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Dirac materials have been proposed as a new class of electron-based detectors for light dark-matter (DM) scattering or absorption, with predicted sensitivities far exceeding superconductors and superfluid helium. The superiority of Dirac materials originates from a significantly reduced in-medium dielectric response winning over the suppression of DM scattering owing to the limited phase space at the point-like Fermi surface. Here we propose a new route to enhance significantly the DM detection efficiency via strongly correlated topological semimetals. Specifically, by considering a strongly correlated Weyl semimetal model system, we demonstrate that the strong correlation-induced flatband effects can amplify the coupling and detection sensitivity to light DM particles by expanding the scattering phase space, while maintaining a weak dielectric in-medium response. |
---|---|
ISSN: | 2331-8422 |