Solving constrained Procrustes problems: a conic optimization approach
Procrustes problems are matrix approximation problems searching for a~transformation of the given dataset to fit another dataset. They find applications in numerous areas, such as factor and multivariate analysis, computer vision, multidimensional scaling or finance. The known methods for solving Pr...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Procrustes problems are matrix approximation problems searching for a~transformation of the given dataset to fit another dataset. They find applications in numerous areas, such as factor and multivariate analysis, computer vision, multidimensional scaling or finance. The known methods for solving Procrustes problems have been designed to handle specific sub-classes, where the set of feasible solutions has a special structure (e.g. a Stiefel manifold), and the objective function is defined using a specific matrix norm (typically the Frobenius norm). We show that a wide class of Procrustes problems can be formulated and solved as a (rank-constrained) semi-definite program. This includes balanced and unbalanced (weighted) Procrustes problems, possibly to a partially specified target, but also oblique, projection or two-sided Procrustes problems. The proposed approach can handle additional linear, quadratic, or semi-definite constraints and the objective function defined using the Frobenius norm but also standard operator norms. The results are demonstrated on a set of numerical experiments and also on real applications. |
---|---|
ISSN: | 2331-8422 |