Can Physics-Informed Neural Networks beat the Finite Element Method?

Partial differential equations play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for insta...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Grossmann, Tamara G, Komorowska, Urszula Julia, Latz, Jonas, Schönlieb, Carola-Bibiane
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Partial differential equations play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of partial differential equations. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear partial differential equations: Poisson in 1D, 2D, and 3D, Allen-Cahn in 1D, semilinear Schr\"odinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.
ISSN:2331-8422