Warning: Full texts from electronic resources are only available from the university network. You are currently outside this network. Please log in to access full texts
ParallelNet: Multi-mode Trajectory Prediction by Multi-mode Trajectory Fusion
Level 5 Autonomous Driving, a technology that a fully automated vehicle (AV) requires no human intervention, has raised serious concerns on safety and stability before widespread use. The capability of understanding and predicting future motion trajectory of road objects can help AV plan a path that...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
20.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
Cover
Summary: | Level 5 Autonomous Driving, a technology that a fully automated vehicle (AV) requires no human intervention, has raised serious concerns on safety and stability before widespread use. The capability of understanding and predicting future motion trajectory of road objects can help AV plan a path that is safe and easy to control. In this paper, we propose a network architecture that parallelizes multiple convolutional neural network backbones and fuses features to make multi-mode trajectory prediction. In the 2020 ICRA Nuscene Prediction challenge, our model ranks 15th on the leaderboard across all teams. |
---|---|
Bibliography: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
ISSN: | 2331-8422 |