Reinforcement Learning for Molecular Dynamics Optimization: A Stochastic Pontryagin Maximum Principle Approach
In this paper, we present a novel reinforcement learning framework designed to optimize molecular dynamics by focusing on the entire trajectory rather than just the final molecular configuration. Leveraging a stochastic version of Pontryagin's Maximum Principle (PMP) and Soft Actor-Critic (SAC)...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
21.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we present a novel reinforcement learning framework designed to optimize molecular dynamics by focusing on the entire trajectory rather than just the final molecular configuration. Leveraging a stochastic version of Pontryagin's Maximum Principle (PMP) and Soft Actor-Critic (SAC) algorithm, our framework effectively explores non-convex molecular energy landscapes, escaping local minima to stabilize in low-energy states. Our approach operates in continuous state and action spaces without relying on labeled data, making it applicable to a wide range of molecular systems. Through extensive experimentation on six distinct molecules, including Bradykinin and Oxytocin, we demonstrate competitive performance against other unsupervised physics-based methods, such as the Greedy and NEMO-based algorithms. Our method's adaptability and focus on dynamic trajectory optimization make it suitable for applications in areas such as drug discovery and molecular design. |
---|---|
ISSN: | 2331-8422 |