JECC: Commonsense Reasoning Tasks Derived from Interactive Fictions

Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We propose a new commonsense reasoning dataset based on human's Interactive Fiction (IF) gameplay walkthroughs as human players dem...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Yu, Mo, Gu, Yi, Guo, Xiaoxiao, Feng, Yufei, Zhu, Xiaodan, Greenspan, Michael, Campbell, Murray, Chuang Gan
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We propose a new commonsense reasoning dataset based on human's Interactive Fiction (IF) gameplay walkthroughs as human players demonstrate plentiful and diverse commonsense reasoning. The new dataset provides a natural mixture of various reasoning types and requires multi-hop reasoning. Moreover, the IF game-based construction procedure requires much less human interventions than previous ones. Different from existing benchmarks, our dataset focuses on the assessment of functional commonsense knowledge rules rather than factual knowledge. Hence, in order to achieve higher performance on our tasks, models need to effectively utilize such functional knowledge to infer the outcomes of actions, rather than relying solely on memorizing facts. Experiments show that the introduced dataset is challenging to previous machine reading models as well as the new large language models with a significant 20% performance gap compared to human experts.
ISSN:2331-8422