Approximating Grouped Fixed Effects Estimation via Fuzzy Clustering Regression
We propose a new, computationally-efficient way to approximate the “grouped fixed-effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the regularization p...
Saved in:
Published in | IDEAS Working Paper Series from RePEc |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
St. Louis
Federal Reserve Bank of St. Louis
01.01.2022
|
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a new, computationally-efficient way to approximate the “grouped fixed-effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the regularization parameter m approaches 1, the fuzzy clustering objective converges to the GFE objective; moreover, we recast this objective as a standard Generalized Method of Moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach delivers improvements in terms of bias, classification accuracy, and computational speed. |
---|