Septin-7 is indispensable in skeletal muscle regeneration: Calcium Signaling and Excitation–Contraction in Cardiac, Skeletal and Smooth Muscle

Septins are considered as the fourth component of the cytoskeleton, with septin-7 isoform playing a critical role in myogenic cell division and fusion. Skeletal muscle regeneration is a highly orchestrated process that requires many steps, including proper cell division to achieve functional recover...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 154; no. 9; p. 1
Main Authors Telek, Andrea, Fodor, Janos, Dobrosi, Nora, Szabo, Laszlo, Gönczi, Monika, Dienes, Beatrix, Csernoch, Laszlo
Format Journal Article
LanguageEnglish
Published New York Rockefeller University Press 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Septins are considered as the fourth component of the cytoskeleton, with septin-7 isoform playing a critical role in myogenic cell division and fusion. Skeletal muscle regeneration is a highly orchestrated process that requires many steps, including proper cell division to achieve functional recovery. Here, the role of septin-7 was investigated in this complex process. To this end, muscle injury was induced in wild type BL6/C57 and septin-7–conditional (mer-Cre-mer) knock-down mice by in vivo BaCl2 injection to the left m. tibialis anterior muscle (TA) of the mice (the right m. tibialis anterior muscle was nontreated control). Mice were sacrificed 4 and 14 d later to reflect the early (monitored by PAX7 level) and late (monitored by myogenin level) phases of muscle regeneration. Western blotting was used to follow the changes of septin-7, PAX7, and myogenin expression at the protein level, while changes of mRNA were detected by qPCR. Morphological differences were visualized by HE staining. Levels of septin-7 protein increased 4 and 14 d after injury in BL6/C57 mice and mRNA expression of SEPT7 showed significant elevation both 4 and 14 d after injection in Cre+ mice only, considered to be a compensatory increase of mRNA expression of SEPT7 in order to ensure the appropriate regeneration process. Furthermore, up-regulation of septin-7 protein was more pronounced on day 14 in both Cre− and Cre+ mice, which may indicate its importance in the later phase of regeneration. Level of PAX7 and myogenin were also increased 4 and 14 d after injury in BL6/C57, Cre−, and Cre+ mice, respectively. Taken together, our data suggest the importance of septin-7 in skeletal muscle regeneration.
ISSN:0022-1295
1540-7748
DOI:10.1085/jgp.2021ecc33