Few-shot Fine-grained Image Classification via Multi-Frequency Neighborhood and Double-cross Modulation

Traditional fine-grained image classification typically relies on large-scale training samples with annotated ground-truth. However, some sub-categories have few available samples in real-world applications, and current few-shot models still have difficulty in distinguishing subtle differences among...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Zhu, Hegui, Gao, Zhan, Wang, Jiayi, Zhou, Yange, Li, Chengqing
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Traditional fine-grained image classification typically relies on large-scale training samples with annotated ground-truth. However, some sub-categories have few available samples in real-world applications, and current few-shot models still have difficulty in distinguishing subtle differences among fine-grained categories. To solve this challenge, we propose a novel few-shot fine-grained image classification network (FicNet) using multi-frequency neighborhood (MFN) and double-cross modulation (DCM). MFN focuses on both spatial domain and frequency domain to capture multi-frequency structural representations, which reduces the influence of appearance and background changes to the intra-class distance. DCM consists of bi-crisscross component and double 3D cross-attention component. It modulates the representations by considering global context information and inter-class relationship respectively, which enables the support and query samples respond to the same parts and accurately identify the subtle inter-class differences. The comprehensive experiments on three fine-grained benchmark datasets for two few-shot tasks verify that FicNet has excellent performance compared to the state-of-the-art methods. Especially, the experiments on two datasets, "Caltech-UCSD Birds" and "Stanford Cars", can obtain classification accuracy 93.17\% and 95.36\%, respectively. They are even higher than that the general fine-grained image classification methods can achieve.
ISSN:2331-8422