Focal Length and Object Pose Estimation via Render and Compare
We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existin...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existing state-of-the-art render-and-compare 6D pose estimator to address the joint estimation task. Second, we investigate several different loss functions for jointly estimating the object pose and focal length. We find that a combination of direct focal length regression with a reprojection loss disentangling the contribution of translation, rotation, and focal length leads to improved results. We show results on three challenging benchmark datasets that depict known 3D models in uncontrolled settings. We demonstrate that our focal length and 6D pose estimates have lower error than the existing state-of-the-art methods. |
---|---|
AbstractList | We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existing state-of-the-art render-and-compare 6D pose estimator to address the joint estimation task. Second, we investigate several different loss functions for jointly estimating the object pose and focal length. We find that a combination of direct focal length regression with a reprojection loss disentangling the contribution of translation, rotation, and focal length leads to improved results. We show results on three challenging benchmark datasets that depict known 3D models in uncontrolled settings. We demonstrate that our focal length and 6D pose estimates have lower error than the existing state-of-the-art methods. |
Author | Ponimatkin, Georgy Russell, Bryan Aubry, Mathieu Sivic, Josef Labbé, Yann |
Author_xml | – sequence: 1 givenname: Georgy surname: Ponimatkin fullname: Ponimatkin, Georgy – sequence: 2 givenname: Yann surname: Labbé fullname: Labbé, Yann – sequence: 3 givenname: Bryan surname: Russell fullname: Russell, Bryan – sequence: 4 givenname: Mathieu surname: Aubry fullname: Aubry, Mathieu – sequence: 5 givenname: Josef surname: Sivic fullname: Sivic, Josef |
BookMark | eNqNysEKgkAQgOElCrLyHQY6CzarVpcuonQIiugum06l6I7trj1_ET1Ap__wfzMx1qxpJDyUchVsIsSp8K1twjDEZI1xLD2xy7lULRxI390DlK7geG2odHBiS5BZV3fK1azhVSs4k67IfFXKXa8MLcTkplpL_q9zscyzS7oPesPPgawrGh6M_qwCk2gbyVWMKP9Tb4IoOQw |
ContentType | Paper |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_26494315223 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 18:43:57 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_26494315223 |
OpenAccessLink | https://www.proquest.com/docview/2649431522?pq-origsite=%requestingapplication% |
PQID | 2649431522 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2649431522 |
PublicationCentury | 2000 |
PublicationDate | 20220411 |
PublicationDateYYYYMMDD | 2022-04-11 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220411 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.397423 |
SecondaryResourceType | preprint |
Snippet | We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Cameras Estimation Pose estimation Three dimensional models |
Title | Focal Length and Object Pose Estimation via Render and Compare |
URI | https://www.proquest.com/docview/2649431522 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfBtfuHHHAF9Da5J2zQvExytQ9wsQ2FvI2lT9WWba_XRv91L1umDsMeQkJBwud_d5Xc5gOuIlZKZnqQFj3IaaF7QmJWCCiN7zEilc2YTnEfjaPgSPEzDaRNwqxpa5UYnOkVdLHIbI79B4JYIdmgu3C4_qK0aZV9XmxIau-D5TAgr1XF6_xtjYZFAi5n_U7MOO9I2eJlamtUB7Jj5Iew5ymVeHUE_tTBCHs38tX4j6NCTJ22DIiRbVIYkePXWWYXk612Riav45kYN1qzxY7hKk-fBkG4WnTViUc3-NsFPoIX-vTkFgncsLFjsh1qaQCmu8ygsVOCXXJRoHgRn0Nk20_n27gvYZ5axb78n9DvQqlef5hJxtNZdd1hd8O6ScTbB1ug7-QFEvHx1 |
link.rule.ids | 783,787,12779,21402,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgFYIbT_EYEAmuEWvSx3IBialVga5U05B2q5I2HVy2sRZ-P07XwQFp50SJEtn-bOdzDHDrsVIw3RO04F5OHcUL2melT30tekwLqXJmCpyHiRe9Oc8Td9Im3KqWVrm2iY2hLua5yZHfIXALBDt0Fx4Wn9R0jTKvq20LjW2wzFdVKNXWY5Cko98sC_N89Jn5P0PboEe4D1YqF3p5AFt6dgg7Dekyr47gPjRAQmI9m9bvBEN68qpMWoSk80qTAJVvVVdIvj8kGTU935pZgxVv_BhuwmA8iOh606wVjCr7OwY_gQ5G-PoUCGqZW7C-7SqhHSm5yj23kI5dcr9EB8E5g-6mlc43D1_DbjQexln8lLxcwB4z_H3zWaHdhU69_NKXiKq1umqv7geDtH37 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focal+Length+and+Object+Pose+Estimation+via+Render+and+Compare&rft.jtitle=arXiv.org&rft.au=Ponimatkin%2C+Georgy&rft.au=Labb%C3%A9%2C+Yann&rft.au=Russell%2C+Bryan&rft.au=Aubry%2C+Mathieu&rft.date=2022-04-11&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |