Focal Length and Object Pose Estimation via Render and Compare

We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existin...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ponimatkin, Georgy, Labbé, Yann, Russell, Bryan, Aubry, Mathieu, Sivic, Josef
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existing state-of-the-art render-and-compare 6D pose estimator to address the joint estimation task. Second, we investigate several different loss functions for jointly estimating the object pose and focal length. We find that a combination of direct focal length regression with a reprojection loss disentangling the contribution of translation, rotation, and focal length leads to improved results. We show results on three challenging benchmark datasets that depict known 3D models in uncontrolled settings. We demonstrate that our focal length and 6D pose estimates have lower error than the existing state-of-the-art methods.
AbstractList We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existing state-of-the-art render-and-compare 6D pose estimator to address the joint estimation task. Second, we investigate several different loss functions for jointly estimating the object pose and focal length. We find that a combination of direct focal length regression with a reprojection loss disentangling the contribution of translation, rotation, and focal length leads to improved results. We show results on three challenging benchmark datasets that depict known 3D models in uncontrolled settings. We demonstrate that our focal length and 6D pose estimates have lower error than the existing state-of-the-art methods.
Author Ponimatkin, Georgy
Russell, Bryan
Aubry, Mathieu
Sivic, Josef
Labbé, Yann
Author_xml – sequence: 1
  givenname: Georgy
  surname: Ponimatkin
  fullname: Ponimatkin, Georgy
– sequence: 2
  givenname: Yann
  surname: Labbé
  fullname: Labbé, Yann
– sequence: 3
  givenname: Bryan
  surname: Russell
  fullname: Russell, Bryan
– sequence: 4
  givenname: Mathieu
  surname: Aubry
  fullname: Aubry, Mathieu
– sequence: 5
  givenname: Josef
  surname: Sivic
  fullname: Sivic, Josef
BookMark eNqNysEKgkAQgOElCrLyHQY6CzarVpcuonQIiugum06l6I7trj1_ET1Ap__wfzMx1qxpJDyUchVsIsSp8K1twjDEZI1xLD2xy7lULRxI390DlK7geG2odHBiS5BZV3fK1azhVSs4k67IfFXKXa8MLcTkplpL_q9zscyzS7oPesPPgawrGh6M_qwCk2gbyVWMKP9Tb4IoOQw
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26494315223
IEDL.DBID 8FG
IngestDate Thu Oct 10 18:43:57 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26494315223
OpenAccessLink https://www.proquest.com/docview/2649431522?pq-origsite=%requestingapplication%
PQID 2649431522
PQPubID 2050157
ParticipantIDs proquest_journals_2649431522
PublicationCentury 2000
PublicationDate 20220411
PublicationDateYYYYMMDD 2022-04-11
PublicationDate_xml – month: 04
  year: 2022
  text: 20220411
  day: 11
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.397423
SecondaryResourceType preprint
Snippet We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Cameras
Estimation
Pose estimation
Three dimensional models
Title Focal Length and Object Pose Estimation via Render and Compare
URI https://www.proquest.com/docview/2649431522
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfBtfuHHHAF9Da5J2zQvExytQ9wsQ2FvI2lT9WWba_XRv91L1umDsMeQkJBwud_d5Xc5gOuIlZKZnqQFj3IaaF7QmJWCCiN7zEilc2YTnEfjaPgSPEzDaRNwqxpa5UYnOkVdLHIbI79B4JYIdmgu3C4_qK0aZV9XmxIau-D5TAgr1XF6_xtjYZFAi5n_U7MOO9I2eJlamtUB7Jj5Iew5ymVeHUE_tTBCHs38tX4j6NCTJ22DIiRbVIYkePXWWYXk612Riav45kYN1qzxY7hKk-fBkG4WnTViUc3-NsFPoIX-vTkFgncsLFjsh1qaQCmu8ygsVOCXXJRoHgRn0Nk20_n27gvYZ5axb78n9DvQqlef5hJxtNZdd1hd8O6ScTbB1ug7-QFEvHx1
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgFYIbT_EYEAmuEWvSx3IBialVga5U05B2q5I2HVy2sRZ-P07XwQFp50SJEtn-bOdzDHDrsVIw3RO04F5OHcUL2melT30tekwLqXJmCpyHiRe9Oc8Td9Im3KqWVrm2iY2hLua5yZHfIXALBDt0Fx4Wn9R0jTKvq20LjW2wzFdVKNXWY5Cko98sC_N89Jn5P0PboEe4D1YqF3p5AFt6dgg7Dekyr47gPjRAQmI9m9bvBEN68qpMWoSk80qTAJVvVVdIvj8kGTU935pZgxVv_BhuwmA8iOh606wVjCr7OwY_gQ5G-PoUCGqZW7C-7SqhHSm5yj23kI5dcr9EB8E5g-6mlc43D1_DbjQexln8lLxcwB4z_H3zWaHdhU69_NKXiKq1umqv7geDtH37
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focal+Length+and+Object+Pose+Estimation+via+Render+and+Compare&rft.jtitle=arXiv.org&rft.au=Ponimatkin%2C+Georgy&rft.au=Labb%C3%A9%2C+Yann&rft.au=Russell%2C+Bryan&rft.au=Aubry%2C+Mathieu&rft.date=2022-04-11&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422