Focal Length and Object Pose Estimation via Render and Compare

We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existin...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ponimatkin, Georgy, Labbé, Yann, Russell, Bryan, Aubry, Mathieu, Sivic, Josef
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existing state-of-the-art render-and-compare 6D pose estimator to address the joint estimation task. Second, we investigate several different loss functions for jointly estimating the object pose and focal length. We find that a combination of direct focal length regression with a reprojection loss disentangling the contribution of translation, rotation, and focal length leads to improved results. We show results on three challenging benchmark datasets that depict known 3D models in uncontrolled settings. We demonstrate that our focal length and 6D pose estimates have lower error than the existing state-of-the-art methods.
ISSN:2331-8422