Effective and Efficient Neural Networks for Spike Inference from In Vivo Calcium Imaging

Calcium imaging technique provides the advantages in monitoring large population of neuronal activities simultaneously. However, it lacks the signal quality provided by neural spike recording in traditional electrophysiology. To address this issue, we developed a supervised data-driven approach to e...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Zhou, Zhanhong, Yip, Hei Matthew, Tsimring, Katya, Sur, Mriganka, Jacque Pak Kan Ip, Chung, Tin
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 15.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calcium imaging technique provides the advantages in monitoring large population of neuronal activities simultaneously. However, it lacks the signal quality provided by neural spike recording in traditional electrophysiology. To address this issue, we developed a supervised data-driven approach to extract spike information from calcium signals. We propose the ENS2 (effective and efficient neural networks for spike inference from calcium signals) system for spike-rate and spike-event predictions using raw calcium inputs based on U-Net deep neural network. When testing on a large, ground truth public database, it consistently outperformed state-of-the-arts algorithms in both spike-rate and spike-event predictions with reduced computational load. We further demonstrated that ENS2 would improve analyses of orientation selectivity in primary visual cortex neurons. We concluded that it would be a versatile inference system that benefits diverse neuroscience studies. Competing Interest Statement The authors have declared no competing interest. Footnotes * Version 3
AbstractList Calcium imaging technique provides the advantages in monitoring large population of neuronal activities simultaneously. However, it lacks the signal quality provided by neural spike recording in traditional electrophysiology. To address this issue, we developed a supervised data-driven approach to extract spike information from calcium signals. We propose the ENS2 (effective and efficient neural networks for spike inference from calcium signals) system for spike-rate and spike-event predictions using raw calcium inputs based on U-Net deep neural network. When testing on a large, ground truth public database, it consistently outperformed state-of-the-arts algorithms in both spike-rate and spike-event predictions with reduced computational load. We further demonstrated that ENS2 would improve analyses of orientation selectivity in primary visual cortex neurons. We concluded that it would be a versatile inference system that benefits diverse neuroscience studies. Competing Interest Statement The authors have declared no competing interest. Footnotes * Version 3
Author Yip, Hei Matthew
Zhou, Zhanhong
Chung, Tin
Jacque Pak Kan Ip
Tsimring, Katya
Sur, Mriganka
Author_xml – sequence: 1
  givenname: Zhanhong
  surname: Zhou
  fullname: Zhou, Zhanhong
– sequence: 2
  givenname: Hei
  surname: Yip
  middlename: Matthew
  fullname: Yip, Hei Matthew
– sequence: 3
  givenname: Katya
  surname: Tsimring
  fullname: Tsimring, Katya
– sequence: 4
  givenname: Mriganka
  surname: Sur
  fullname: Sur, Mriganka
– sequence: 5
  fullname: Jacque Pak Kan Ip
– sequence: 6
  givenname: Tin
  surname: Chung
  fullname: Chung, Tin
BookMark eNqNyrsOgjAYhuEOOni6ALc_cRbbctwJRhcXjXEjDf4lFWixFLx9O3gBTm-efN-SzLTRSMiW0YAxyg6cchbQLAhpEMUZZ-mCPAopsXJqQhD6CV6qUqgdXHC0ovVxH2ObAaSxcO1Vg3DWEi3qCkFa03nCXU0GctFWavTuRK10vSZzKdoBN7-uyO5Y3PLTvrfmPeLgypcZrfZTyZMoyUKexmH43-sLeMFCog
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FH
AAFGM
AAMXL
ABOIG
ABUWG
ADZZV
AFKRA
AFLLJ
AFOLM
AGAJT
AQTIP
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQCXX
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1101/2021.08.30.458217
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central Korea - hybrid linking
Natural Science Collection - hybrid linking
Biological Science Collection - hybrid linking
ProQuest Central (Alumni)
ProQuest Central (Alumni) - hybrid linking
ProQuest Central UK/Ireland
SciTech Premium Collection - hybrid linking
ProQuest Central Student - hybrid linking
ProQuest Central Essentials - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
Publicly Available Content Database
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-proquest_journals_26468327533
IEDL.DBID BENPR
IngestDate Tue Oct 22 18:53:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26468327533
OpenAccessLink https://www.proquest.com/docview/2646832753?pq-origsite=%requestingapplication%
PQID 2646832753
PQPubID 2050091
ParticipantIDs proquest_journals_2646832753
PublicationCentury 2000
PublicationDate 20221015
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 20221015
  day: 15
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
Score 3.4249825
Snippet Calcium imaging technique provides the advantages in monitoring large population of neuronal activities simultaneously. However, it lacks the signal quality...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Calcium imaging
Calcium signalling
Electrophysiology
Firing pattern
Firing rate
Information processing
Nervous system
Neural networks
Neuroimaging
Orientation behavior
Predictions
Visual cortex
Title Effective and Efficient Neural Networks for Spike Inference from In Vivo Calcium Imaging
URI https://www.proquest.com/docview/2646832753
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB20vXhTVPxYJaDXamibdnMSXLqsHpbFL3pbpmkCxdWt211_v5OYoqe9NAyFkoZhXl7mZQbgusqMMUmsiZvUVZTmAiNpyJS5RpEoVaFxaotpNnlNH0tR-gO3zssq-5joAnW9VPaM_JaAOyPvo931XfsV2a5RNrvqW2jsQhgTU-ABhPfFdPbk05fkbpbcuyKdCb-xKSLfmOx_0HVIMt6HcIatXh3Ajv48hPK3eDBFHEaMnhWungPBALM1M3BBgxNpd4y2luy5bd41e-hv6DF7M4RM9tZ8L9kIF6rZkP3h2g4dwdW4eBlNon4Sc-803fzvF5NjCIj96xNgtRJGEewrmfMUzVBqjlyiihHVkB6nMNj2pbPtr89hL7Z6fivREAMI1quNviCUXVeXfil_AN3EhR4
link.rule.ids 783,787,21400,27937,33756,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20OehNUfGj6oJeoyGfzUmwpKRaQ9EquYXJZheC1cam9fc7u27QUy9ZhkDYLMO8nZ23bwCuy1BK6bmCcpOqtP0oQDuWZMaRwMDjvESp2RZZmL76D3mQmwO31tAqu5ioA3W14OqM_JaAOyTvo931XfNlq65RqrpqWmhsg6Wkqij5su6TbPpsypfkbiq51yKdnnOjSkSmMdn_oKuRZLQH1hQbsdyHLfF5APmveDBFHEYZPUu0ngPBAFOaGTinQZO0W0ZbS_bS1O-CjbsbekzdDCGTvdXfCzbEOa_XZH_otkOHcDVKZsPU7iZRGKdpi79f9I6gR9m_OAZW8UBygn0eR46PchALB50YuYvIB_Q4gf6mL51ufn0JO-nsaVJMxtnjGey6ituv6BpBH3qr5VqcE-KuyguzrD9RGogY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+and+Efficient+Neural+Networks+for+Spike+Inference+from+In+Vivo+Calcium+Imaging&rft.jtitle=bioRxiv&rft.au=Zhou%2C+Zhanhong&rft.au=Yip%2C+Hei+Matthew&rft.au=Tsimring%2C+Katya&rft.au=Sur%2C+Mriganka&rft.date=2022-10-15&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft_id=info:doi/10.1101%2F2021.08.30.458217