Learning What You Need from What You Did: Product Taxonomy Expansion with User Behaviors Supervision

Taxonomies have been widely used in various domains to underpin numerous applications. Specially, product taxonomies serve an essential role in the e-commerce domain for the recommendation, browsing, and query understanding. However, taxonomies need to constantly capture the newly emerged terms or c...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Cheng, Sijie, Gu, Zhouhong, Liu, Bang, Xie, Rui, Wu, Wei, Xiao, Yanghua
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Taxonomies have been widely used in various domains to underpin numerous applications. Specially, product taxonomies serve an essential role in the e-commerce domain for the recommendation, browsing, and query understanding. However, taxonomies need to constantly capture the newly emerged terms or concepts in e-commerce platforms to keep up-to-date, which is expensive and labor-intensive if it relies on manual maintenance and updates. Therefore, we target the taxonomy expansion task to attach new concepts to existing taxonomies automatically. In this paper, we present a self-supervised and user behavior-oriented product taxonomy expansion framework to append new concepts into existing taxonomies. Our framework extracts hyponymy relations that conform to users' intentions and cognition. Specifically, i) to fully exploit user behavioral information, we extract candidate hyponymy relations that match user interests from query-click concepts; ii) to enhance the semantic information of new concepts and better detect hyponymy relations, we model concepts and relations through both user-generated content and structural information in existing taxonomies and user click logs, by leveraging Pre-trained Language Models and Graph Neural Network combined with Contrastive Learning; iii) to reduce the cost of dataset construction and overcome data skews, we construct a high-quality and balanced training dataset from existing taxonomy with no supervision. Extensive experiments on real-world product taxonomies in Meituan Platform, a leading Chinese vertical e-commerce platform to order take-out with more than 70 million daily active users, demonstrate the superiority of our proposed framework over state-of-the-art methods. Notably, our method enlarges the size of real-world product taxonomies from 39,263 to 94,698 relations with 88% precision.
ISSN:2331-8422