Concurrent CPU-GPU Task Programming using Modern C++

In this paper, we introduce Heteroflow, a new C++ library to help developers quickly write parallel CPU-GPU programs using task dependency graphs. Heteroflow leverages the power of modern C++ and task-based approaches to enable efficient implementations of heterogeneous decomposition strategies. Our...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Tsung-Wei, Huang, Lin, Yibo
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we introduce Heteroflow, a new C++ library to help developers quickly write parallel CPU-GPU programs using task dependency graphs. Heteroflow leverages the power of modern C++ and task-based approaches to enable efficient implementations of heterogeneous decomposition strategies. Our new CPU-GPU programming model allows users to express a problem in a way that adapts to effective separation of concerns and expertise encapsulation. Compared with existing libraries, Heteroflow is more cost-efficient in performance scaling, programming productivity, and solution generality. We have evaluated Heteroflow on two real applications in VLSI design automation and demonstrated the performance scalability across different CPU-GPU numbers and problem sizes. At a particular example of VLSI timing analysis with million-scale tasking, Heteroflow achieved 7.7x runtime speed-up (99 vs 13 minutes) over a baseline on a machine of 40 CPU cores and 4 GPUs.
ISSN:2331-8422