A hardware-software co-design approach to minimize the use of memory resources in multi-core neuromorphic processors
Both in electronics and biology, physical implementations of neural networks have severe energy and memory constraints. We propose a hardware-software co-design approach for minimizing the use of memory resources in multi-core neuromorphic processors, by taking inspiration from biological neural net...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Both in electronics and biology, physical implementations of neural networks have severe energy and memory constraints. We propose a hardware-software co-design approach for minimizing the use of memory resources in multi-core neuromorphic processors, by taking inspiration from biological neural networks. We use this approach to design new routing schemes optimized for small-world networks and to provide guidelines for designing novel application-specific multi-core neuromorphic chips. Starting from the hierarchical routing scheme proposed, we present a hardware-aware placement algorithm that optimizes the allocation of resources for arbitrary network models. We validate the algorithm with a canonical small-world network and present preliminary results for other networks derived from it. |
---|---|
ISSN: | 2331-8422 |